Energía nuclear

De Wikipedia, la enciclopedia libre
Saltar a navegación , búsqueda
El Susquehanna vapor Electric Station , un reactor de agua en ebullición . Los reactores se encuentran dentro de los rectangulares edificios de contención hacia la parte delantera de las torres de refrigeración .
Tres buques de guerra de propulsión nuclear estadounidense, (de arriba abajo) nuclear cruceros USS Bainbridge y USS Long Beach con USS Enterprise el primero de propulsión nuclear portaaviones en 1964. Los miembros del equipo están deletreando Einstein 's equivalencia masa-energía fórmula E = mc 2 en la cubierta de vuelo.
El ruso de propulsión nuclear rompehielos Yamal NS en una expedición de 1994 conjuntamente con la NSF .

La energía nuclear es el uso de sostenido fisión nuclear para generar calor y electricidad . Las centrales nucleares aportaron cerca del 5,7% de la población mundial de energía y el 13% de la electricidad mundial en 2012. [1] En 2013, el OIEA informe de que hay 437 operacionales reactores de energía nuclear, [2] en 31 países. [3] Con más de 150 buques de guerra con propulsión nuclear de haber sido construido.

Hay un continuo debate sobre el uso de la energía nuclear . [4] [5] [6] Los autores, como la Asociación Nuclear Mundial , el OIEA y ambientalistas para la Energía Nuclear sostienen que la energía nuclear es una energía sostenible fuente que reduce las emisiones de carbono . [7] Los opositores , como Greenpeace Internacional y NIRS , creen que la energía nuclear plantea muchas amenazas a las personas y el medio ambiente. [8] [9] [10]

Accidentes nucleares de plantas de energía incluyen el desastre de Chernobyl (1986), Fukushima Daiichi nuclear desastre (2011), y el accidente de Three Mile Island (1979). [11] También se han producido algunos accidentes submarinos de propulsión nuclear. [11] [12] [13] La investigación sobre mejora de la seguridad continúa [14] y la fusión nuclear , que se cree ser más seguros, se pueden usar en el futuro. A partir de 2012, según el OIEA , existen en todo el mundo había 68 reactores de uso civil de energía nuclear en construcción en 15 países. [2] En los EE.UU. las licencias de casi la mitad de sus reactores se han ampliado a 60 años, [15] y los planes para construir otra docena están bajo seria consideración. [16] Sin embargo, 2011 Japón Fukushima desastre Daiichi nuclear provocó un replanteamiento de la política de energía nuclear en muchos países. [17] Alemania decidió cerrar todos sus reactores para el 2022, e Italia ha prohibido la energía nuclear. [ 17] Después de Fukushima, la Agencia Internacional de Energía redujo su estimación de la capacidad adicional de generación de energía nuclear que se construyó en 2035. [18]

Contenido

Utilizar

Mundo histórico y proyectado el uso de energía por fuente de energía, 1990-2035 Fuente: International Energy Outlook 2011, la EIA .
La energía nuclear y la capacidad instalada de generación de 1980 a 2010 (EIA).
El estado de la energía nuclear a nivel mundial
(Click en la imagen para la leyenda)
Porcentaje de energía producida por las centrales nucleares

En 2011, la energía nuclear siempre que el 10% de la electricidad del mundo [19] En 2007, el OIEA informó que había 439 reactores nucleares en funcionamiento en el mundo, [20] que operan en 31 países. [3] operación Sin embargo, muchos han cesado a raíz de la catástrofe nuclear de Fukushima, mientras que se evalúan para la seguridad. En 2011, la producción nuclear mundial cayó un 4,3%, la mayor caída de la historia, en la parte posterior de fuertes caídas en Japón (-44,3%) y Alemania (-23,2%). [21]

Dado que la energía nuclear comercial comenzó en la década de 1950 a mediados de 2008 fue el primer año que no la nueva planta de energía nuclear se conectó a la red eléctrica, aunque dos fueron conectados en 2009. [22] [23]

Generación anual de la energía nuclear ha estado en una tendencia a la baja desde 2007, disminuyendo un 1,8% en 2009 a 2558 TWh de energía nuclear reunión 13-14% de la demanda eléctrica del mundo. [24] Uno de los factores en la disminución de la energía nuclear porcentaje desde 2007 ha sido el cierre prolongado de grandes reactores en la planta de energía nuclear Kashiwazaki-Kariwa en Japón a raíz del terremoto de Niigata-Chuetsu-Oki . [24]

Los Estados Unidos producen la energía más nuclear, la energía nuclear proporciona el 19% [25] de la electricidad que consume, mientras que Francia produce el mayor porcentaje de su energía eléctrica a partir de reactores nucleares-80% a partir de 2006. [26] En el Europeo Unión como una energía total, la energía nuclear proporciona el 30% de la electricidad. [27] la política de energía nuclear difiere entre los países de la Unión Europea, y algunos, como Austria , Estonia , Irlanda y Italia , no tienen estaciones activas de energía nuclear. En comparación, Francia tiene un gran número de estas plantas, con 16 unidades de múltiples estaciones de uso corriente.

En los EE.UU., mientras que la industria del carbón y electricidad gas se estima en un valor de $ 85 mil millones para el año 2013, los generadores de energía nuclear se prevé un valor de $ 18 mil millones. [28]

Muchos militares y algunos civiles (como un rompehielos buques) usar propulsión nuclear marina , una forma de propulsión nuclear . [29] A pocos vehículos espaciales han puesto en marcha con pleno derecho reactores nucleares : el Soviet RORSAT serie y el estadounidense SNAP-10A .

Internacional se continúa la investigación en mejoras de seguridad tales como seguridad pasiva plantas, [14] el uso de la fusión nuclear y los usos adicionales de calor de proceso, tales como la producción de hidrógeno (en apoyo de una economía del hidrógeno ), para la desalinización del agua de mar, y para su uso en de calefacción sistemas.

El uso en el espacio

Tanto la fisión y la fusión parecen prometedores para propulsión espacial aplicaciones, generando mayores velocidades de misión con menos masa de reacción . Esto es debido a la densidad de energía mucho más alto de reacciones nucleares: 7 algunos órdenes de magnitud (10.000.000 veces) más energéticos que las reacciones químicas que potencia la generación actual de cohetes.

La desintegración radiactiva se ha utilizado en una escala relativamente pequeña (unos pocos kW), sobre todo para alimentar las misiones espaciales y experimentos mediante el uso de generadores termoeléctricos de radioisótopos , tales como las desarrolladas en el Laboratorio Nacional de Idaho .

Historia

Orígenes

La búsqueda de la energía nuclear para la generación de electricidad comenzó poco después del descubrimiento en el siglo 20 que radiactivas elementos, como la radio , lanzado inmensas cantidades de energía, de acuerdo con el principio de la equivalencia masa-energía . Sin embargo, los medios de aprovechamiento de la energía tal era poco práctico, ya que los elementos radiactivos eran intensamente, por su propia naturaleza, de corta duración (liberación de energía de alto se correlaciona con cortos períodos de semidesintegración ). Sin embargo, el sueño de aprovechar la "energía atómica" era bastante fuerte, a pesar de que fue despedido por tales padres de la física nuclear , como Ernest Rutherford como "luz de luna". [30] Esta situación, sin embargo, cambió a finales de 1930, con el descubrimiento de fisión nuclear .

En 1932, James Chadwick descubrió el neutrón , [31] que fue inmediatamente reconocida como una herramienta potencial para la experimentación nuclear debido a su falta de una carga eléctrica. La experimentación con el bombardeo con neutrones de materiales dirigidos Frédéric e Irène Joliot-Curie para descubrir la radiactividad inducida en 1934, que permitió la creación de radio-elementos similares en mucho menos que el precio del radio natural. [32] trabajo adicional por Enrico Fermi en 1930 centrado en el uso neutrones lentos para aumentar la eficacia de la radiactividad inducida. Los experimentos bombardeando uranio con neutrones Fermi llevó a creer que había creado un nuevo elemento transuránicos, que se denominó hesperium . [33]

La construcción de la central de Reactor B en Hanford Site durante el Proyecto Manhattan .

Pero en 1938, químicos alemanes Otto Hahn [34] y Fritz Strassmann , junto con el físico austríaco Lise Meitner [35] y el sobrino de Meitner, Otto Robert Frisch , [36] llevaron a cabo experimentos con los productos de neutrones bombardean uranio, como un medio de seguir investigando las reclamaciones de Fermi. Determinaron que el neutrón relativamente pequeño dividir el núcleo de los átomos de uranio masivas en dos partes más o menos iguales, lo que contradice Fermi. [33] Este fue un resultado muy sorprendente: todas las otras formas de desintegración nuclear incluyó sólo pequeños cambios en la masa del núcleo , mientras que este proceso-conocido como "fisión" como una referencia a la biología -implicó una ruptura completa del núcleo. Numerosos científicos, entre ellos Leó Szilárd , que fue uno de los primeros, reconoció que si las reacciones de fisión libera neutrones adicionales, un auto-sostenible reacción nuclear en cadena puede provocar. Una vez que esto fue confirmado experimentalmente y anunciado por Frédéric Joliot-Curie en 1939, los científicos de muchos países (incluyendo Estados Unidos, Reino Unido, Francia, Alemania y la Unión Soviética) pidieron a sus gobiernos para apoyar la investigación de fisión nuclear, sólo en la cúspide de la Segunda Guerra Mundial, para el desarrollo de un arma nuclear. [37]

En los Estados Unidos, donde Fermi y Szilard había emigrado a la vez, esto condujo a la creación del primer reactor hecho por el hombre, conocido como Chicago Pile-1 , que alcanzó la criticidad el 2 de diciembre de 1942. Este trabajo formó parte del Proyecto Manhattan , que hizo uranio enriquecido y construyeron grandes reactores para reproducirse plutonio para su uso en las primeras armas nucleares , que fueron utilizados en las ciudades de Hiroshima y Nagasaki .

Las bombillas primera vez iluminada por la electricidad generada por energía nuclear en EBR-1 en el Laboratorio Nacional Argonne y el Oeste .

Después de la Segunda Guerra Mundial, las perspectivas de la utilización de "energía atómica" para el bien, en lugar de limitarse a la guerra, fue defendida como una razón para no seguir toda la investigación nuclear controlada por organizaciones militares. Sin embargo, la mayoría de los científicos están de acuerdo que la energía nuclear civil tomaría por lo menos una década de dominar, y el hecho de que los reactores nucleares también producen plutonio utilizable para armas creado una situación en la que la mayoría de gobiernos nacionales (como los de Estados Unidos, el Reino Unido , Canadá y la Unión Soviética) intentó mantener los reactores de investigación bajo estricto control gubernamental y la clasificación. En los Estados Unidos, los reactores de investigación fue realizado por la Comisión de Energía Atómica de los EE.UU. , principalmente en Oak Ridge, Tennessee , Hanford Site , y el Laboratorio Nacional de Argonne .

El trabajo en los Estados Unidos, Reino Unido, Canadá, [38] y la URSS procedió a lo largo de la década de 1940 y principios de 1950. La electricidad se generó por primera vez en un reactor nuclear el 20 de diciembre de 1951, en ​​el EBR-I estación experimental cerca de Arco, Idaho , que inicialmente produjo cerca de 100 kW. [39] [40] El trabajo fue también fuertemente investigado en los EE.UU. en la propulsión nuclear marina , con un reactor de prueba que se desarrolló en 1953 (con el tiempo, el USS Nautilus , el primer submarino de propulsión nuclear, que lanzará en 1955). [41] En 1953, EE.UU. El presidente Dwight Eisenhower dio su " Átomos para la Paz " discurso en la ONU , haciendo hincapié en la necesidad de desarrollar "pacíficos" usos de la energía nuclear con rapidez. Esto fue seguido por las 1954 enmiendas a la Ley de Energía Atómica que permite la desclasificación de la tecnología de reactores rápidos EE.UU. y alentó el desarrollo del sector privado.

Primeros años

Calder Hall de la estación de energía nuclear en el Reino Unido era el mundo de la primera central nuclear para producir electricidad en cantidades comerciales. [42]

El 27 de junio de 1954, la URSS 's Plant Obninsk nuclear se convirtió en la primera planta de energía nuclear para generar electricidad para la red eléctrica , y produjo alrededor de cinco megavatios de energía eléctrica. [43] [44]

Más tarde, en 1954, Lewis Strauss , el entonces presidente de la United States Atomic Energy Commission (AEC EE.UU., precursor de los EE.UU. Comisión de Regulación Nuclear y el United States Department of Energy ) habló de la electricidad en el futuro ser " demasiado barata para medirla ". [ 45] Strauss fue muy probablemente se refiere a la fusión de hidrógeno [46] , que se está desarrollando en secreto como parte del Proyecto de Sherwood en el momento, pero Strauss declaración fue interpretada como una promesa de energía muy barata procedente de la fisión nuclear. La AEC EE.UU. se había emitido testimonio mucho más conservadora con respecto a la fisión nuclear para el Congreso de los EE.UU. sólo unos meses antes, proyectando que "los costos se pueden reducir ... [que] ... casi lo mismo que el costo de la electricidad a partir de fuentes convencionales. .. " [47] decepción significativa se desarrollaría más tarde, cuando las nuevas plantas nucleares no proporcionó energía "demasiado barata para medirla".

En 1955 la ONU "Primera Conferencia de Ginebra", entonces la mayor reunión mundial de científicos e ingenieros, se reunieron para explorar la tecnología. En 1957 EURATOM se lanzó junto a la Comunidad Económica Europea (esta última es la actual Unión Europea). Ese mismo año también vio el lanzamiento de la Agencia Internacional de Energía Atómica (OIEA).

La estación de Shippingport Atomic Power en Shippingport, Pennsylvania fue el primer reactor comercial en los EE.UU. y fue inaugurado en 1957.

La primera estación de energía nuclear comercial, Calder Hall en Windscale, Inglaterra, fue inaugurado en 1956 con una capacidad inicial de 50 MW (más tarde 200 MW). [42] [48] El primer generador nuclear comercial que entre en funcionamiento en los Estados Unidos fue el Reactor Shippingport ( Pennsylvania , diciembre de 1957).

Una de las primeras organizaciones en desarrollar la energía nuclear fue la Marina de los EE.UU. , con el fin de propulsar submarinos y portaaviones . El primer submarino de propulsión nuclear, USS Nautilus (SSN-571) , se hizo a la mar en diciembre de 1954. [49] Dos submarinos nucleares de Estados Unidos, USS Scorpion y USS Thresher , se han perdido en el mar. Varios accidentes graves nucleares y la radiación han involucrado percances nucleares submarinas. [11] [13] El submarino soviético K-19 accidente del reactor en 1961 dio como resultado ocho muertos y más de 30 personas resultaron demasiado expuestos a la radiación. [12] La Unión Soviética submarino K-27 accidente del reactor en 1968 dio lugar a nueve muertos y 83 heridos otros. [13]

El Ejército de los EE.UU. también tenía un programa de energía nuclear , a partir de 1954. El SM-1 Planta de Energía Nuclear, en Fort Belvoir , Virginia , fue el primer reactor de potencia en los EE.UU. para suministrar energía eléctrica a una red comercial (VEPCO), en abril de 1957, antes de Shippingport. La SL-1 era un Ejército de EE.UU. experimental reactor nuclear en la estación Reactor Nacional de Pruebas en el este de Idaho . Se sometió a una explosión de vapor y crisis en enero de 1961, que mató a sus tres operadores. [50]

Desarrollo

Historia de la utilización de la energía nuclear (parte superior) y el número de activos centrales nucleares (parte inferior).
Washington Sistema Público de Suministro de Energía Centrales nucleares 3 y 5 nunca se completaron.

La capacidad instalada nuclear aumentó inicialmente con relativa rapidez, pasando de menos de 1 gigavatio (GW) en 1960 a 100 GW a finales de 1970 y 300 GW a finales de 1980. Desde finales de la década de 1980 la capacidad mundial ha crecido mucho más lentamente, llegando a 366 GW en 2005. Entre alrededor de 1970 y 1990, más de 50 GW de capacidad en construcción (llegando a más de 150 GW de finales de los 70 y principios de los 80) - En 2005, alrededor de 25 GW de nueva capacidad fue planeado. Más de las dos terceras partes de todas las plantas nucleares ordenados después de enero de 1970 se canceló el tiempo. [49] Un total de 63 unidades nucleares fueron cancelados en los EE.UU. entre 1975 y 1980. [51]

Durante los años 1970 y 1980 el aumento de los costos económicos (relacionados con los tiempos de construcción extendidos en gran parte debido a los cambios normativos y procesales a la presión de grupo) [52] y la caída de precios de los combustibles fósiles hechos centrales nucleares en construcción entonces menos atractiva. En la década de 1980 (EE.UU.) y 1990 (Europa), el crecimiento de carga plano y liberalización de la electricidad también la adición de gran capacidad de carga base poco atractivo nuevo.

La crisis del petróleo de 1973 tuvo un efecto significativo en países como Francia y Japón, que se había basado en mayor medida en el petróleo para la generación eléctrica (39% [53] [ verificación necesitada ] y 73% respectivamente) para invertir en energía nuclear. [54 ]

Parte de la oposición local a la energía nuclear surgió en la década de 1960, [55] y en la década de 1960 algunos miembros de la comunidad científica comenzó a expresar sus preocupaciones. [56] Estas preocupaciones relacionadas con accidentes nucleares , la proliferación nuclear , el alto costo de la energía nuclear plantas , el terrorismo nuclear y la eliminación de residuos radiactivos . [57] A principios de 1970, hubo grandes protestas sobre una planta de energía nuclear proyectada en Wyhl , Alemania. El proyecto fue cancelado en 1975 y anti-nuclear éxito en oposición Wyhl inspirado a la energía nuclear en otras partes de Europa y América del Norte. [58] [59] a mediados de los años 1970 el activismo antinuclear había ido más allá de las protestas locales y la política obtener un mayor atractivo e influencia, y la energía nuclear se convirtió en un tema de protesta pública. [60] A pesar de que carecía de una sola organización coordinadora, y no tienen metas uniformes, los esfuerzos del movimiento ganó una gran cantidad de atención. [61 ] En algunos países, el conflicto nuclear "alcanzó una intensidad sin precedentes en la historia de las controversias tecnología". [62] En Francia, entre 1975 y 1977, unas 175.000 personas se manifestaron en contra de la energía nuclear en diez manifestaciones. [63] En el oeste de Alemania , entre febrero de 1975 y abril de 1979, alrededor de 280.000 personas participaron en manifestaciones en siete emplazamientos nucleares. Ocupaciones Varios sitios se intentaron también. Tras el accidente de Three Mile Island en 1979, unas 120.000 personas asistieron a una manifestación en contra de la energía nuclear en Bonn . [63] En mayo de 1979, alrededor de 70.000 personas, entre ellas el entonces gobernador de California, Jerry Brown , asistieron a una marcha y manifestación en contra energía nuclear en Washington, DC [64] antinucleares grupos de poder surgido en cada país que ha tenido un programa de energía nuclear. Algunas de estas organizaciones antinuclear se informa, han desarrollado una experiencia considerable en la energía nuclear y la energía. [65]

La ciudad abandonada de Pripyat con la planta de Chernobyl en la distancia.

Problemas de salud y seguridad, el accidente de 1979 en Three Mile Island , y el 1986 de desastre de Chernobyl tuvo un papel en la detención de construcción de nuevas plantas en muchos países, [66] [67] aunque la organización de políticas públicas Brookings Institution sugiere que las unidades nucleares nuevas que no tienen ha ordenado en los EE.UU. debido a una débil demanda de electricidad y sobrecostos en las plantas nucleares debido a cuestiones reglamentarias y los retrasos de construcción. [68]

A diferencia del accidente de Three Mile Island, el accidente de Chernobyl mucho más grave no aumentó regulaciones que afectan a los reactores occidentales desde los reactores de Chernóbil eran de la problemática RBMK diseño utilizado en la Unión Soviética, por ejemplo, carece de "robustas" edificios de contención . [69] Muchos de estos reactores RBMK todavía están en uso hoy en día. Sin embargo, se hicieron cambios en ambos los propios reactores (uso de un enriquecimiento de uranio más seguro) y en el sistema de control (prevención de la desactivación de los sistemas de seguridad), entre otras cosas, para reducir la posibilidad de un accidente duplicado. [70]

Una organización internacional para promover la conciencia sobre la seguridad y el desarrollo profesional de los operadores de instalaciones nucleares fue creado: WANO , la Asociación Mundial de Operadores Nucleares.

La oposición en Irlanda y Polonia impedido que los programas nucleares de allí, mientras que Austria (1978), Suecia (1980) e Italia (1987) (influenciado por Chernobyl) votaron en referendos para oponerse o eliminar la energía nuclear. En julio de 2009, el Parlamento italiano aprobó una ley que anuló los resultados de un referéndum antes y permitió el inicio inmediato del programa nuclear italiano. [71] Después de la catástrofe de Fukushima Daiichi nuclear una moratoria de un año se colocó en el desarrollo de la energía nuclear, [ 72] seguido de un referéndum en el que más del 94% de los votantes (57% participación) rechazó los planes para nuevas centrales nucleares. [73]

Central nuclear

A diferencia de centrales de combustibles fósiles , la única sustancia dejando las torres de refrigeración de las centrales nucleares es vapor de agua y por lo tanto no contaminan el aire o causar el calentamiento global .

Al igual que muchos convencionales centrales térmicas generan electricidad mediante el aprovechamiento de la energía térmica liberada por la quema de combustibles fósiles , las centrales nucleares convertir la energía liberada por el núcleo de un átomo a través de la fisión nuclear que se lleva a cabo en un reactor nuclear . El calor se elimina del núcleo del reactor por un sistema de refrigeración que utiliza el calor para generar vapor, que impulsa una turbina de vapor conectada a un generador de producción de electricidad .

Ciclo vital

El ciclo del combustible nuclear comienza cuando el uranio es extraído, enriquecido, y fabricado en combustible nuclear, (1) que se suministra a una planta de energía nuclear . Después de su uso en la planta de energía, el combustible gastado se entrega a una planta de reprocesamiento (2) o a un depósito final (3) para la disposición geológica. En reprocesamiento 95% del combustible gastado potencialmente pueden ser reciclados para ser devuelto a su uso en una planta de energía (4).

Un reactor nuclear es sólo una parte del ciclo de vida de la energía nuclear. El proceso se inicia con la minería (véase la minería de uranio ). Las minas de uranio son subterráneas, a cielo abierto , o in-situ lixiviación minas. En cualquier caso, el mineral de uranio se extrae, normalmente se convierte en una forma estable y compacta, tal como óxido de uranio , y luego se transportan a una instalación de procesamiento. Aquí, la torta amarilla se convierte en hexafluoruro de uranio , que luego se enriqueció mediante diversas técnicas. En este punto, el uranio enriquecido, que contiene más que el natural 0,7% de U-235, se utiliza para hacer varillas de la composición apropiada y la geometría para el reactor particular que el combustible esté destinado. Las barras de combustible se gastan alrededor de 3 ciclos de operación (típicamente 6 años en total ahora) en el interior del reactor, por lo general hasta un 3% de su uranio se ha fisionado, entonces van a ser trasladados a una piscina de combustible gastado en los isótopos de corta vida, generado por la fisión puede decaer de distancia. Después de aproximadamente 5 años en una piscina de combustible gastado el combustible gastado es radiactivamente y térmicamente suficientemente fría, y puede ser movido a secar contenedores de almacenamiento o reprocesado.

Recursos convencionales de combustible

El uranio es bastante común elemento en la corteza terrestre. El uranio es casi tan común como el estaño o germanio en la corteza de la Tierra, y es cerca de 40 veces más común que la plata . [74] El uranio es un componente de la mayoría de las rocas, tierra y de los océanos. El hecho de que el uranio es tan dispersa es un problema porque la extracción de uranio sólo es económicamente factible cuando hay una gran concentración. Aún así, el mundo los recursos actuales medidos de uranio, económicamente recuperables a un precio de 130 dólares / kg, son suficientes para durar entre 70 y 100 años. [75] [76] [77] El uranio representa un mayor nivel de recursos aseguró que Es normal que la mayoría de los minerales. Sobre la base de analogías con otros minerales metálicos, la duplicación de los precios desde los niveles actuales podría esperarse que crear sobre un aumento de diez veces en recursos medidos, con el tiempo.

De acuerdo con la OCDE en el año 2006, existe una previsión de 85 años por valor de uranio en los recursos identificados, cuando el uranio que se utiliza en la actualidad la tecnología de reactores , con 670 años de uranio económicamente recuperables en el total de los recursos convencionales y los fosfatos minerales, mientras que también está usando reactor presente tecnología , un recurso que se puede recuperar de entre 60-100 dólares EE.UU. / kg de uranio. [78] La OCDE ha señalado que:

Aunque la industria nuclear se expande de manera significativa, se dispone de suficiente combustible durante siglos. Si avanzados reactores reproductores podrían ser diseñados en el futuro para utilizar eficientemente el uranio empobrecido y reciclarse o actínidos de todos, entonces la eficiencia de la utilización de recursos sería mejorado por un factor adicional de ocho.

Por ejemplo, la OCDE ha determinado que con un puro reactor rápido ciclo de combustible con una quema de, y el reciclaje de todo el uranio y actínidos , los actínidos que actualmente componen las sustancias más peligrosas en los residuos nucleares , no es de 160.000 años de valor de Uranio en el total de los recursos convencionales y fosfato mineral. [79]

De acuerdo con la OCDE libro 's rojo en 2011, debido al aumento de la exploración, recursos de uranio conocidos han crecido un 12,5% desde 2008, con este incremento se traduce en más de un siglo de uranio disponible si la tasa de uso de los metales se mantuviera en el 2011 nivel. [80] [81]

Actuales reactores de agua ligera hacer uso relativamente ineficiente de combustible nuclear, fisión sólo los muy raro isótopo uranio-235. reprocesamiento nuclear puede hacer este tipo de residuos reutilizables y diseños de reactores más eficientes, como el actualmente en construcción reactores de Generación III lograr una mayor eficiencia quemar de los recursos disponibles, que los actuales vendimia generación de reactores II , que constituyen la gran mayoría de los reactores en todo el mundo. [82]

Cría

A diferencia de los actuales reactores de agua ligera que utilizan uranio-235 (el 0,7% de todo el uranio natural), los reactores reproductores rápidos utilizan uranio-238 (el 99,3% de todo el uranio natural). Se ha estimado que hay hasta un valor de cinco mil millones años "de uranio-238 para su uso en estas plantas de energía. [83]

Criador tecnología se ha utilizado en varios reactores, pero el alto costo del combustible reprocesado de manera segura, en 2006 los niveles tecnológicos, requiere de los precios del uranio de más de 200 USD / kg antes de convertirse en económicamente justificables. [84] Los reactores reproductores siguen sin embargo siendo perseguido, ya que tienen el potencial para quemar todos los actínidos en el inventario actual de los residuos nucleares a la vez que la producción de energía y la creación de cantidades adicionales de combustible para reactores más a través del proceso de mejoramiento. [85] [86] En 2005, había dos reactores que producen el poder del Phénix en Francia, que desde entonces ha apagado en el 2009 después de 36 años de operación, y el reactor BN-600 , un reactor construido en 1980 Beloyarsk, Rusia, que sigue en funcionamiento a partir de 2013. La producción de electricidad de BN-600 es de 600 MW - Rusia planea ampliar las naciones el uso de reactores reproductores con el reactor BN-800 , programado para entrar en funcionamiento en 2014, [87] y el diseño técnico de un criador todavía más grande, el BN -1200 reactor programado para ser terminado en 2013, con la construcción prevista para 2015. [88] Japón Monju reactor reproductor reiniciado (después de haber sido cerrado en 1995) en 2010 por 3 meses, pero apagará de nuevo después de que el equipo cayó en el reactor durante el reactor chequeos, está previsto para ser re-operativo a finales de 2013. [89] Tanto China como la India están construyendo reactores reproductores. Con el indio 500 MWe prototipo de reactor reproductor rápido programado para entrar en funcionamiento en 2013, con planes para construir cinco más en 2020. [90] El Reactor Experimental Rápido de China comenzó a producir energía en 2011. [91]

Otra alternativa a los reproductores rápidos es un reactor térmico reproductores que usan uranio-233 generado a partir de torio como combustible de fisión en el ciclo de combustible de torio . El torio es alrededor de 3,5 veces más común que el uranio en la corteza de la Tierra, y tiene diferentes características geográficas. Esto ampliaría la base total de los recursos práctico fisionable en un 450%. [92] A diferencia de la cría de U-238 en plutonio, los reactores reproductores rápidos no son necesarias - se puede realizar satisfactoriamente en las plantas más convencionales. India ha investigado esta tecnología, ya que cuenta con abundantes reservas de torio, pero uranio poco.

Fusión

La energía de fusión aboga comúnmente proponen el uso de deuterio , o tritio , ambos isótopos de hidrógeno , como combustible y en muchos diseños actuales también litio y boro . Suponiendo una salida de la energía de fusión igual a la producción mundial actual y que esto no aumentará en el futuro, a continuación, las reservas conocidas de litio actuales duraría 3000 años, el litio del agua de mar sería últimos 60 millones de años, y un proceso de fusión más complicado usando sólo deuterio a partir de agua de mar tendría combustible durante 150 millones de años. [93] Si bien este proceso aún no se ha dado cuenta, muchos expertos creen que la fusión para ser una prometedora fuente futura de energía debido a la radiactividad de corta vida de los residuos producidos, sus bajas emisiones de carbono , y su potencia de salida prospectivo.

Los residuos sólidos

El flujo de residuos más importante de las centrales nucleares es el combustible nuclear gastado . Está compuesto principalmente de uranio no convertida, así como cantidades significativas de transuránicos actínidos (plutonio y el curio , en su mayoría). Además, alrededor del 3% de los productos de fisión es de reacciones nucleares. Los actínidos (uranio, plutonio, curio y) son responsables de la mayor parte de la radiactividad a largo plazo, mientras que los productos de fisión son responsables de la mayor parte de la radiactividad a corto plazo. [94]

Residuos de alto nivel radiactivo

El combustible nuclear gastado almacenado bajo el agua y sin tapar en el sitio de Hanford en Washington , EE.UU..

Flota nuclear del mundo genera unas 10.000 toneladas métricas de alto nivel del combustible nuclear gastado cada año. [95] de alto nivel de gestión de los residuos radiactivos problemas de gestión y eliminación de los altamente radiactivos materiales creados durante la producción de energía nuclear. Los problemas técnicos de lograr esto son enormes proporciones, debido a los períodos extremadamente largos desechos radiactivos permanecen mortal para los organismos vivos. De particular preocupación son dos de larga vida de la fisión , tecnecio-99 (vida media de 220.000 años) y yodo-129 (vida media de 15,7 millones años), [96] que dominan la radiactividad del combustible nuclear gastado después de unos pocos miles de años. The most troublesome transuranic elements in spent fuel are Neptunium-237 (half-life two million years) and Plutonium-239 (half-life 24,000 years). [ 97 ] Consequently, high-level radioactive waste requires sophisticated treatment and management to successfully isolate it from the biosphere . This usually necessitates treatment, followed by a long-term management strategy involving permanent storage, disposal or transformation of the waste into a non-toxic form. [ 98 ]

Governments around the world are considering a range of waste management and disposal options, usually involving deep-geologic placement, although there has been limited progress toward implementing long-term waste management solutions. [ 99 ] This is partly because the timeframes in question when dealing with radioactive waste range from 10,000 to millions of years, [ 100 ] [ 101 ] according to studies based on the effect of estimated radiation doses. [ 102 ]

Some proposed nuclear reactor designs however such as the American Integral Fast Reactor and the Molten salt reactor can use the nuclear waste from light water reactors as a fuel, transmutating it to isotopes that would be safe after hundreds, instead of tens of thousands of years. This offers a potentially more attractive alternative to deep geological disposal. [ 103 ] [ 104 ] [ 105 ]

Another possibility is the use of thorium in a reactor especially designed for thorium (rather than mixing in thorium with uranium and plutonium (ie in existing reactors). Used thorium fuel remains only a few hundreds of years radioactive, instead of tens of thousands of years. [ 106 ]

Since the fraction of a radioisotope's atoms decaying per unit of time is inversely proportional to its half-life, the relative radioactivity of a quantity of buried human radioactive waste would diminish over time compared to natural radioisotopes (such as the decay chains of 120 trillion tons of thorium and 40 trillion tons of uranium which are at relatively trace concentrations of parts per million each over the crust's 3 * 10 19 ton mass). [ 107 ] [ 108 ] [ 109 ] For instance, over a timeframe of thousands of years, after the most active short half-life radioisotopes decayed, burying US nuclear waste would increase the radioactivity in the top 2000 feet of rock and soil in the United States (10 million km 2 ) by 1 part in 10 million over the cumulative amount of natural radioisotopes in such a volume, although the vicinity of the site would have a far higher concentration of artificial radioisotopes underground than such an average. [ 110 ]

Low-level radioactive waste

The Ikata Nuclear Power Plant , a pressurized water reactor that cools by secondary coolant exchange with the ocean

The nuclear industry also produces a large volume of low-level radioactive waste in the form of contaminated items like clothing, hand tools, water purifier resins, and (upon decommissioning) the materials of which the reactor itself is built. In the United States, the Nuclear Regulatory Commission has repeatedly attempted to allow low-level materials to be handled as normal waste: landfilled, recycled into consumer items, etcetera. [ citation needed ]

Comparing radioactive waste to industrial toxic waste

In countries with nuclear power, radioactive wastes comprise less than 1% of total industrial toxic wastes, much of which remains hazardous for long periods. [ 82 ] Overall, nuclear power produces far less waste material by volume than fossil-fuel based power plants. [ 111 ] Coal -burning plants are particularly noted for producing large amounts of toxic and mildly radioactive ash due to concentrating naturally occurring metals and mildly radioactive material from the coal. [ 112 ] A 2008 report from Oak Ridge National Laboratory concluded that coal power actually results in more radioactivity being released into the environment than nuclear power operation, and that the population effective dose equivalent from radiation from coal plants is 100 times as much as from ideal operation of nuclear plants. [ 113 ] Indeed, coal ash is much less radioactive than nuclear waste, but ash is released directly into the environment, whereas nuclear plants use shielding to protect the environment from the irradiated reactor vessel, fuel rods, and keep any radioactive waste on site. [ 114 ]

Waste disposal

Disposal of nuclear waste is often said to be the Achilles' heel of the industry. [ 115 ] Presently, waste is mainly stored at individual reactor sites and there are over 430 locations around the world where radioactive material continues to accumulate. Some experts suggest that centralized underground repositories which are well-managed, guarded, and monitored, would be a vast improvement. [ 115 ] There is an "international consensus on the advisability of storing nuclear waste in deep geological repositories ", [ 116 ] with the lack of movement of nuclear waste in the 2 billion year old natural nuclear fission reactors in Oklo , Gabon being cited as "a source of essential information today." [ 117 ] [ 118 ]

As of 2009 there were no commercial scale purpose built underground repositories in operation. [ 116 ] [ 119 ] [ 120 ] [ 121 ] The Waste Isolation Pilot Plant in New Mexico has been taking nuclear waste since 1999 from production reactors, but as the name suggests is a research and development facility. In January 2013, Cumbria county council rejected UK central government proposals to start work on an underground storage dump for nuclear waste near to the Lake District National Park . "For any host community, there will be a substantial community benefits package and worth hundreds of millions of pounds" said Ed Davey, Energy Secretary, but nonetheless, the local elected administrative and governing body voted 7-3 against research continuing, after hearing evidence from independent geologists that "the fractured strata of the county was impossible to entrust with such dangerous material and a hazard lasting millennia." [ 122 ] [ 123 ]

Reprocessing

Reprocessing can potentially recover up to 95% of the remaining uranium and plutonium in spent nuclear fuel, putting it into new mixed oxide fuel . This produces a reduction in long term radioactivity within the remaining waste, since this is largely short-lived fission products, and reduces its volume by over 90%. Reprocessing of civilian fuel from power reactors is currently done in Britain, France and (formerly) Russia, soon will be done in China and perhaps India, and is being done on an expanding scale in Japan. The full potential of reprocessing has not been achieved because it requires breeder reactors , which are not commercially available. France is generally cited as the most successful reprocessor, but it presently only recycles 28% (by mass) of the yearly fuel use, 7% within France and another 21% in Russia. [ 124 ]

Reprocessing is not allowed in the US [ 125 ] The Obama administration has disallowed reprocessing of nuclear waste, citing nuclear proliferation concerns. [ 126 ] In the US, spent nuclear fuel is currently all treated as waste. [ 127 ]

Depleted uranium

Uranium enrichment produces many tons of depleted uranium (DU) which consists of U-238 with most of the easily fissile U-235 isotope removed. U-238 is a tough metal with several commercial uses—for example, aircraft production, radiation shielding, and armor—as it has a higher density than lead . Depleted uranium is also controversially used in munitions; DU penetrators (bullets or APFSDS tips) "self sharpen", due to uranium's tendency to fracture along shear bands. [ 128 ] [ 129 ]

Ciencias económicas

The economics of new nuclear power plants is a controversial subject, since there are diverging views on this topic, and multi-billion dollar investments ride on the choice of an energy source. Nuclear power plants typically have high capital costs for building the plant, but low fuel costs. Therefore, comparison with other power generation methods is strongly dependent on assumptions about construction timescales and capital financing for nuclear plants as well as the future costs of fossil fuels and renewables as well as for energy storage solutions for intermittent power sources. Cost estimates also need to take into account plant decommissioning and nuclear waste storage costs. On the other hand measures to mitigate global warming , such as a carbon tax or carbon emissions trading , may favor the economics of nuclear power.

In recent years there has been a slowdown of electricity demand growth and financing has become more difficult, which has an impact on large projects such as nuclear reactors, with very large upfront costs and long project cycles which carry a large variety of risks. [ 130 ] In Eastern Europe, a number of long-established projects are struggling to find finance, notably Belene in Bulgaria and the additional reactors at Cernavoda in Romania, and some potential backers have pulled out. [ 130 ] Where cheap gas is available and its future supply relatively secure, this also poses a major problem for nuclear projects. [ 130 ]

Analysis of the economics of nuclear power must take into account who bears the risks of future uncertainties. To date all operating nuclear power plants were developed by state-owned or regulated utility monopolies [ 131 ] where many of the risks associated with construction costs, operating performance, fuel price, accident liability and other factors were borne by consumers rather than suppliers. In addition, because the potential liability from a nuclear accident is so great, the full cost of liability insurance is generally limited/capped by the government, which the US Nuclear Regulatory Commission concluded constituted a significant subsidy. [ 132 ] Many countries have now liberalized the electricity market where these risks, and the risk of cheaper competitors emerging before capital costs are recovered, are borne by plant suppliers and operators rather than consumers, which leads to a significantly different evaluation of the economics of new nuclear power plants. [ 133 ]

Following the 2011 Fukushima nuclear accident , costs are expected to increase for currently operating and new nuclear power plants, due to increased requirements for on-site spent fuel management and elevated design basis threats. [ 134 ]

Accidents and safety, the human and financial costs

Some serious nuclear and radiation accidents have occurred. Nuclear power plant accidents include the Chernobyl disaster (1986), the Fukushima Daiichi nuclear disaster (2011), and the Three Mile Island accident (1979). [ 11 ] Nuclear-powered submarine mishaps include the K-19 reactor accident (1961), [ 12 ] the K-27 reactor accident (1968), [ 13 ] and the K-431 reactor accident (1985). [ 11 ] International research is continuing into safety improvements such as passively safe plants, [ 14 ] and the possible future use of nuclear fusion .

Nuclear power has caused far fewer accidental deaths per unit of energy generated than other major forms of power generation. Energy production from coal and natural gas has caused far more deaths due to accidents. [ 135 ] [ 136 ] [ 137 ] [ not in citation given ( See discussion. ) ] In comparison, nuclear power plant accidents rank first in terms of their economic cost, accounting for 41 percent of all property damage attributed to energy accidents . [ 138 ]

Nuclear proliferation

Many technologies and materials associated with the creation of a nuclear power program have a dual-use capability, in that they can be used to make nuclear weapons if a country chooses to do so. When this happens a nuclear power program can become a route leading to the atomic bomb or a public annex to a secret bomb program. The crisis over Iran's nuclear activities is a case in point. [ 139 ]

A fundamental goal for American and global security is to minimize the nuclear proliferation risks associated with the expansion of nuclear power. If this development is "poorly managed or efforts to contain risks are unsuccessful, the nuclear future will be dangerous". [ 139 ]

A "number of high-ranking officials, even within the United Nations, have argued that they can do little to stop states using nuclear reactors to produce nuclear weapons". [ 140 ] A 2009 United Nations report said that:

The revival of interest in nuclear power could result in the worldwide dissemination of uranium enrichment and spent fuel reprocessing technologies, which present obvious risks of proliferation as these technologies can produce fissile materials that are directly usable in nuclear weapons. [ 140 ]

On the other hand, one factor influencing the support of reactors is due to the appeal that reactors have at reducing nuclear weapons arsenals through the Megatons to Megawatts Program , a program which has thus far eliminated 425 metric tons of highly enriched uranium, the equivalent of 17,000 nuclear warheads, by converting it into fuel for commercial nuclear reactors, and is the single most successful non-proliferation program to date. [ 141 ]

Usable nuclear energy in ICBM.png

Anti-nuclear weapon advocates, such as the Bulletin of the Atomic Scientists want to see the Megatons to Megawatts Program not only continue but be expanded, [ 141 ] The program appeals to anti-nuclear weapon advocates as it provides a financial incentive for countries with vast quantities of nuclear weapons, like Russia, to dismantle their arsenal and sell the fissile fuel contained within to operators of nuclear reactors.

United States and USSR / Russian nuclear weapons stockpiles, 1945-2006.The Megatons to Megawatts Program was the main driving force behind the sharp reduction in the quantity of nuclear weapons worldwide since the cold war ended. [ 141 ] [ 142 ] However without an increase in nuclear reactors and greater demand for fissile fuel, the cost of dismantling has dissuaded Russia from continuing their disarmament.

The Megatons to Megawatts Program has been hailed as a major success by anti-nuclear weapon advocates as it has largely been the driving force behind the sharp reduction in the quantity of nuclear weapons worldwide since the cold war ended. [ 141 ] However without an increase in nuclear reactors and greater demand for fissile fuel, the cost of dismantling and down blending has dissuaded Russia from continuing their disarmament.

Currently, according to Harvard professor Matthew Bunn: The Russians are not remotely interested in extending the program beyond 2013. We've managed to set it up in a way that costs them more and profits them less than them just making new low-enriched uranium for reactors from scratch. But there are other ways to set it up that would be very profitable for them and would also serve some of their strategic interests in boosting their nuclear exports. [ 143 ]

In April 2012 there were thirty one countries that have civil nuclear power plants, [ 144 ] with only nine of which with nuclear weapons and almost every nuclear weapons state began producing weapons first instead of commercial nuclear power plants.

In the Megatons to Megawatts Program approximately $8 billion of weapons grade uranium is being converted to reactor grade uranium in the elimination of 10,000 nuclear weapons. [ 145 ]

Las cuestiones ambientales

A 2008 synthesis of 103 studies, published by Benjamin K. Sovacool, estimated that the value of CO 2 emissions for nuclear power over the lifecycle of a plant was 66.08 g/kW·h. Comparative results for various renewable power sources were 9–32 g/kW·h. [ 146 ] A 2012 study by Yale University arrived at a different value, with the mean value, depending on which Reactor design was analyzed, ranging from 11 to 25 g/kW·h of total life cycle nuclear power CO 2 emissions. [ 147 ]

Life cycle analysis (LCA) of carbon dioxide emissions show nuclear power as comparable to renewable energy sources. Emissions from burning fossil fuels are many times higher. [ 146 ] [ 148 ] [ 149 ]

According to the United Nations ( UNSCEAR ), regular nuclear power plant operation including the nuclear fuel cycle causes radioisotope releases into the environment amounting to 0.0002 mSv (milli- Sievert ) per year of public exposure as a global average. [ 150 ] (Such is small compared to variation in natural background radiation , which averages 2.4 mSv/a globally but frequently varies between 1 mSv/a and 13 mSv/a depending on a person's location as determined by UNSCEAR). [ 150 ] As of a 2008 report, the remaining legacy of the worst nuclear power plant accident (Chernobyl) is 0.002 mSv/a in global average exposure (a figure which was 0.04 mSv per person averaged over the entire populace of the Northern Hemisphere in the year of the accident in 1986, although far higher among the most affected local populations and recovery workers). [ 150 ]

Cambio climático

Climate change causing weather extremes such as heat waves , reduced precipitation levels and droughts can have a significant impact on nuclear energy infrastructure. [ 151 ] Seawater is corrosive and so nuclear energy supply is likely to be negatively affected by the fresh water shortage . [ 151 ] This generic problem may become increasingly significant over time. [ 151 ] This can force nuclear reactors to be shut down, as happened in France during the 2003 and 2006 heat waves. Nuclear power supply was severely diminished by low river flow rates and droughts, which meant rivers had reached the maximum temperatures for cooling reactors. [ 151 ] During the heat waves, 17 reactors had to limit output or shut down. 77% of French electricity is produced by nuclear power and in 2009 a similar situation created a 8GW shortage and forced the French government to import electricity. [ 151 ] Other cases have been reported from Germany, where extreme temperatures have reduced nuclear power production 9 times due to high temperatures between 1979 and 2007. [ 151 ] In particular:

Similar events have happened elsewhere in Europe during those same hot summers. [ 151 ] If global warming continues, this disruption is likely to increase.

Nuclear decommissioning

The price of energy inputs and the environmental costs of every nuclear power plant continue long after the facility has finished generating its last useful electricity. Both nuclear reactors and uranium enrichment facilities must be decommissioned, returning the facility and its parts to a safe enough level to be entrusted for other uses. After a cooling-off period that may last as long as a century, reactors must be dismantled and cut into small pieces to be packed in containers for final disposal. The process is very expensive, time-consuming, dangerous for workers, hazardous to the natural environment, and presents new opportunities for human error, accidents or sabotage. [ 152 ]

The total energy required for decommissioning can be as much as 50% more than the energy needed for the original construction. In most cases, the decommissioning process costs between US $300 million to US$5.6 billion. Decommissioning at nuclear sites which have experienced a serious accident are the most expensive and time-consuming. In the US there are 13 reactors that have permanently shut down and are in some phase of decommissioning, and none of them have completed the process. [ 152 ]

Current UK plants are expected to exceed £73bn in decommissioning costs. "Nuclear decommissioning costs exceed £73bn" . http://www.edie.net/news/news_story.asp?id=15009&title=Nuclear+decommissioning+costs+exceed+%26%23163%3B73bn .

Debate on nuclear power

The nuclear power debate concerns the controversy [ 5 ] [ 6 ] [ 61 ] which has surrounded the deployment and use of nuclear fission reactors to generate electricity from nuclear fuel for civilian purposes. The debate about nuclear power peaked during the 1970s and 1980s, when it "reached an intensity unprecedented in the history of technology controversies", in some countries. [ 62 ] [ 153 ]

Proponents of nuclear energy contend that nuclear power is a sustainable energy source that reduces carbon emissions and increases energy security by decreasing dependence on imported energy sources. [ 7 ] Proponents claim that nuclear power produces virtually no conventional air pollution, such as greenhouse gases and smog, in contrast to the chief viable alternative of fossil fuel . Nuclear power can produce base-load power unlike many renewables which are intermittent energy sources lacking large-scale and cheap ways of storing energy. [ 154 ] M. King Hubbert saw oil as a resource that would run out , and proposed nuclear energy as a replacement energy source. [ 155 ] Proponents claim that the risks of storing waste are small and can be further reduced by using the latest technology in newer reactors, and the operational safety record in the Western world is excellent when compared to the other major kinds of power plants. [ 156 ]

Opponents believe that nuclear power poses many threats to people and the environment. [ 8 ] [ 9 ] [ 10 ] These threats include the problems of processing, transport and storage of radioactive nuclear waste , the risk of nuclear weapons proliferation and terrorism, as well as health risks and environmental damage from uranium mining . [ 157 ] [ 158 ] They also contend that reactors themselves are enormously complex machines where many things can and do go wrong; and there have been serious nuclear accidents . [ 159 ] [ 160 ] Critics do not believe that the risks of using nuclear fission as a power source can be fully offset through the development of new technology . They also argue that when all the energy-intensive stages of the nuclear fuel chain are considered, from uranium mining to nuclear decommissioning , nuclear power is neither a low-carbon nor an economical electricity source. [ 161 ] [ 162 ] [ 163 ]

Arguments of economics and safety are used by both sides of the debate.

Comparison with renewable energy

Nuclear power has been compared to renewable energy as neither produce greenhouse gases in operation and both have low lifecycle greenhouse gas emissions. [ 164 ] The cost of both nuclear power and wind power are dominated by plant construction costs, although the operation and maintenance costs for nuclear power were estimated in 2008 to be slightly higher than wind power according to the US Energy Information Administration [ 165 ] and considerably cheaper according to Lazard. [ 166 ]

A typical nuclear power plant has an economic lifespan of around 40 years, while wind turbines have a lifespan of around 25 years, according to Lappeenranta University of Technology . [ 167 ] However, wind turbines are much easier to decommission and replace with new ones, extending the life of the wind farm indefinitely, where as nuclear facilities must be closed at the end of their useful life.

There is however no spent fuel that needs to be stored or reprocessed with conventional renewable energy sources. [ 168 ] A nuclear plant needs to be disassembled and removed. Much of the disassembled nuclear plant needs to be stored as low level nuclear waste. [ 169 ]

The cost of nuclear power has followed an increasing trend, as has the installation cost of wind power from approximately 2002, whereas the LCOE is declining in wind power [ 170 ] . In about 2011, wind power became as inexpensive as natural gas, and anti-nuclear groups have suggested that in 2010 solar power became cheaper than nuclear power. [ 171 ] [ 172 ] Data from the EIA in 2011 estimated that in 2016, solar will have a levelized cost of electricity almost twice that of nuclear (21¢/kWh for solar, 11.39¢/kWh for nuclear), and wind somewhat less (9.7¢/kWh). Wind power and photovoltaics are variable renewable energy sources, meaning they are not dispatchable, and locally can be unavailable for days on end. Both, like nuclear, require buffering, with pumped hydrostorage. [ 173 ] However due to nuclear powers capacity factor of 80-90%, in comparison to intermittent wind power's 30-40%, the requirements for pumped storage are much less than those needed for wind power.

From a safety stand point, nuclear power, in terms of lives lost per unit of electricity delivered, is comparable to and in some cases, lower than many renewable energy sources. [ 135 ] [ 174 ] [ 136 ]

In the United Kingdom, the amount of energy produced from renewable energy is expected to exceed that from nuclear power by 2018, [ 175 ] and Scotland plans to obtain all electricity from renewable energy by 2020. [ 176 ]

In 2012 the share of electricity generated by renewable sources in Germany was 21.9%, compared to 16.0% for nuclear power after Germany shut down 7-8 of its 18 nuclear reactors in 2011. [ 177 ]

The majority of installed renewable energy across the world is in the form of Hydro power .

Nuclear power organizations

See Outline of nuclear power#Nuclear power organizations

There are multiple organizations which have taken a position on nuclear power – some are proponents, and some are opponents.

Nuclear renaissance

Since about 2001 the term "nuclear renaissance" has been used to refer to a possible nuclear power industry revival, driven by rising fossil fuel prices and new concerns about meeting greenhouse gas emission limits. Being able to rely on an uninterrupted domestic supply of electricity is also a factor. In the words of the French, "We have no coal , we have no oil , we have no gas , we have no choice." [ 178 ] Improvements in nuclear reactor safety, and the public's waning memory of past nuclear accidents ( Three Mile Island in 1979 and Chernobyl in 1986), as well as of the plant construction cost overruns of the 1970s and 80s, are lowering public resistance to new nuclear construction. [ 179 ]

At the same time, various barriers to a nuclear renaissance have been identified. These include: unfavourable economics compared to other sources of energy, slowness in addressing climate change , industrial bottlenecks and personnel shortages in nuclear sector, and the unresolved nuclear waste issue. There are also concerns about more accidents, security, and nuclear weapons proliferation . [ 22 ] [ 180 ] [ 181 ] [ 182 ]

New reactors under construction in Finland and France, which were meant to lead a nuclear renaissance, have been delayed and are running over-budget. [ 183 ] [ 184 ] [ 185 ] China has 20 new reactors under construction, [ 186 ] and there are also a considerable number of new reactors being built in South Korea, India, and Russia. At least 100 older and smaller reactors will "most probably be closed over the next 10-15 years". [ 187 ]

In 2007 the Kashiwazaki-Kariwa Nuclear Power Plant , the world's largest nuclear power plant, suffered earthquake damage, and in 2011 the nuclear emergencies at Japan's Fukushima I Nuclear Power Plant and other nuclear facilities raised questions over the future of the renaissance. [ 188 ] [ 189 ] [ 190 ] [ 191 ] [ 192 ] Platts has reported that "the crisis at Japan's Fukushima nuclear plants has prompted leading energy-consuming countries to review the safety of their existing reactors and cast doubt on the speed and scale of planned expansions around the world". [ 193 ] Many countries are re-evaluating their nuclear energy programs and in April 2011 a study by UBS predicted that around 30 nuclear plants could be closed world-wide as a result, with those located in seismic zones or close to national boundaries being the most likely to shut. The UBS analysts believe that 'even pro-nuclear counties such as France will be forced to close at least two reactors to demonstrate political action and restore the public acceptability of nuclear power', noting that the events at Fukushima 'cast doubt on the idea that even an advanced economy can master nuclear safety '. [ 194 ] Canadian uranium-mining company Cameco expects the size of world's fleet of operating reactors in 2020 to increase by about 90 reactors, 10% less than before the Fukushima accident. [ 195 ]

Future of the industry

Brunswick Nuclear Plant discharge canal

As of 2007, Watts Bar 1 in Tennessee, which came on-line on February 7, 1996, was the last US commercial nuclear reactor to go on-line. This is often quoted as evidence of a successful worldwide campaign for nuclear power phase-out. However, even in the US and throughout Europe, investment in research and in the nuclear fuel cycle has continued, and some nuclear industry experts [ 196 ] predict electricity shortages , fossil fuel price increases, global warming and heavy metal emissions from fossil fuel use, new technology such as passively safe plants, and national energy security will renew the demand for nuclear power plants.

According to the World Nuclear Association , globally during the 1980s one new nuclear reactor started up every 17 days on average, and by the year 2015 this rate could increase to one every 5 days. [ 197 ]

There is a possible impediment to production of nuclear power plants as only a few companies worldwide have the capacity to forge single-piece reactor pressure vessels, [ 198 ] which are necessary in the most common reactor designs. Utilities across the world are submitting orders years in advance of any actual need for these vessels. Other manufacturers are examining various options, including making the component themselves, or finding ways to make a similar item using alternate methods. [ 199 ] Other solutions include using designs that do not require single-piece forged pressure vessels such as Canada's Advanced CANDU Reactors or Sodium-cooled Fast Reactors .

China has 25 reactors under construction, with plans to build more, [ 201 ] while in the US the licenses of almost half its reactors have been extended to 60 years, [ 202 ] and plans to build another dozen are under serious consideration. [ 16 ] China may achieve its long-term plan of having 40,000 megawatts of nuclear power capacity four to five years ahead of schedule. [ 203 ] However, according to a government research unit, China must not build "too many nuclear power reactors too quickly", in order to avoid a shortfall of fuel, equipment and qualified plant workers. [ 204 ]

The US NRC and the US Department of Energy have initiated research into Light water reactor sustainability which is hoped will lead to allowing extensions of reactor licenses beyond 60 years, in increments of 20 years, provided that safety can be maintained, as the loss in non-CO 2 -emitting generation capacity by retiring reactors "may serve to challenge US energy security, potentially resulting in increased greenhouse gas emissions, and contributing to an imbalance between electric supply and demand." [ 205 ]

Nuclear phase out

Following the Fukushima I nuclear accidents , the International Energy Agency halved its estimate of additional nuclear generating capacity to be built by 2035. [ 18 ] Platts has reported that "the crisis at Japan's Fukushima nuclear plants has prompted leading energy-consuming countries to review the safety of their existing reactors and cast doubt on the speed and scale of planned expansions around the world". [ 193 ] In 2011, The Economist reported that nuclear power "looks dangerous, unpopular, expensive and risky", and that "it is replaceable with relative ease and could be forgone with no huge structural shifts in the way the world works". [ 206 ]

In early April 2011, analysts at Swiss-based investment bank UBS said: "At Fukushima, four reactors have been out of control for weeks, casting doubt on whether even an advanced economy can master nuclear safety . . .. We believe the Fukushima accident was the most serious ever for the credibility of nuclear power". [ 207 ]

In 2011, Deutsche Bank analysts concluded that "the global impact of the Fukushima accident is a fundamental shift in public perception with regard to how a nation prioritizes and values its populations health, safety, security, and natural environment when determining its current and future energy pathways". As a consequence, " renewable energy will be a clear long-term winner in most energy systems, a conclusion supported by many voter surveys conducted over the past few weeks. At the same time, we consider natural gas to be, at the very least, an important transition fuel, especially in those regions where it is considered secure". [ 208 ]

In September 2011, German engineering giant Siemens announced it will withdraw entirely from the nuclear industry, as a response to the Fukushima nuclear disaster in Japan, and said that it would no longer build nuclear power plants anywhere in the world. The company's chairman, Peter Löscher, said that "Siemens was ending plans to cooperate with Rosatom, the Russian state-controlled nuclear power company, in the construction of dozens of nuclear plants throughout Russia over the coming two decades". [ 209 ] [ 210 ] Also in September 2011, IAEA Director General Yukiya Amano said the Japanese nuclear disaster "caused deep public anxiety throughout the world and damaged confidence in nuclear power". [ 211 ]

In February 2012, the United States Nuclear Regulatory Commission approved the construction of two additional reactors at the Vogtle Electric Generating Plant , the first reactors to be approved in over 30 years since the Three Mile Island accident, [ 212 ] but NRC Chairman Gregory Jaczko cast a dissenting vote citing safety concerns stemming from Japan's 2011 Fukushima nuclear disaster , and saying "I cannot support issuing this license as if Fukushima never happened". [ 213 ] One week after Southern received the license to begin major construction on the two new reactors, a dozen environmental and anti-nuclear groups are suing to stop the Plant Vogtle expansion project, saying "public safety and environmental problems since Japan's Fukushima Daiichi nuclear reactor accident have not been taken into account". [ 214 ]

The nuclear reactors to be built at Vogtle are new AP1000 third generation reactors, which are said to have safety improvements over older power reactors. [ 212 ] However, John Ma, a senior structural engineer at the NRC, is concerned that some parts of the AP1000 steel skin are so brittle that the "impact energy" from a plane strike or storm driven projectile could shatter the wall. [ 215 ] Edwin Lyman, a senior staff scientist at the Union of Concerned Scientists , is concerned about the strength of the steel containment vessel and the concrete shield building around the AP1000. [ 215 ] Arnold Gundersen , a nuclear engineer commissioned by several anti-nuclear groups, released a report which explored a hazard associated with the possible rusting through of the containment structure steel liner. [ 216 ]

The Union of Concerned Scientists has referred to the European Pressurized Reactor , currently under construction in China, Finland and France, as the only new reactor design under consideration in the United States that "...appears to have the potential to be significantly safer and more secure against attack than today's reactors." [ 217 ]

Worldwide wind power has been increasing at 26%/year, and solar power at 58%/year, from 2006 to 2011, as a replacement for thermal generation of electricity. [ 218 ]

Advanced concepts

Current reactors in operation around the world are second or third generation systems, with most of the first-generation systems having been retired some time ago. Research into advanced generation IV reactor types was officially started by the Generation IV International Forum (GIF) based on eight technology goals, including to improve nuclear safety, improve proliferation resistance, minimize waste, improve natural resource utilization, the ability to consume existing nuclear waste in the production of electricity, and decrease the cost to build and run such plants. Most of these reactors differ significantly from current operating light water reactors, and are generally not expected to be available for commercial construction before 2030. [ 219 ]

Nuclear fusion

Nuclear fusion reactions have the potential to be safer and generate less radioactive waste than fission. [ 220 ] [ 221 ] These reactions appear potentially viable, though technically quite difficult and have yet to be created on a scale that could be used in a functional power plant. Fusion power has been under intense theoretical and experimental investigation since the 1950s.

Véase también

Referencias

  1. ^ (PDF) Key World Energy Statistics 2012 . International Energy Agency . 2012 . https://www.iea.org/publications/freepublications/publication/kwes.pdf . Consultado el 12/17/2012.
  2. ^ a b http://www.iaea.org/pris/
  3. ^ a b "World Nuclear Power Reactors 2007-08 and Uranium Requirements" . Asociación Nuclear Mundial. 2008-06-09. Archived from the original on March 3, 2008 . http://web.archive.org/web/20080303234143/http://www.uic.com.au/reactors.htm . Consultado el 21/06/2008.
  4. ^ Union-Tribune Editorial Board (March 27, 2011). "The nuclear controversy" . Union-Tribune . http://www.signonsandiego.com/news/2011/mar/27/nuclear-controversy/ .
  5. ^ a b James J. MacKenzie. Review of The Nuclear Power Controversy by Arthur W. Murphy The Quarterly Review of Biology , Vol. 52, No. 4 (Dec., 1977), pp. 467-468.
  6. ^ a b In February 2010 the nuclear power debate played out on the pages of the New York Times , see A Reasonable Bet on Nuclear Power and Revisiting Nuclear Power: A Debate and A Comeback for Nuclear Power?
  7. ^ a b US Energy Legislation May Be 'Renaissance' for Nuclear Power .
  8. ^ a b Share. "Nuclear Waste Pools in North Carolina" . Consultado el 08/24/2010.
  9. ^ a b NC WARN » Nuclear Power
  10. ^ a b Sturgis, Sue. "Investigation: Revelations about Three Mile Island disaster raise doubts over nuclear plant safety" . Southernstudies.org . http://www.southernstudies.org/2009/04/post-4.html . Consultado el 08/24/2010.
  11. ^ a b c d e The Worst Nuclear Disasters
  12. ^ a b c Strengthening the Safety of Radiation Sources p. 14.
  13. ^ a b c d Johnston, Robert (September 23, 2007). "Deadliest radiation accidents and other events causing radiation casualties" . Database of Radiological Incidents and Related Events . http://www.johnstonsarchive.net/nuclear/radevents/radevents1.html .
  14. ^ a b c David Baurac (2002). "Passively safe reactors rely on nature to keep them cool" . Logos ( Argonne National Laboratory ) 20 (1) . http://www.ne.anl.gov/About/hn/logos-winter02-psr.shtml . Consultado el 07/25/2012.
  15. ^ "Nuclear Power in the USA" . World Nuclear Association . June 2008 . http://www.world-nuclear.org/info/inf41.html#licence . Consultado el 07/25/2008.
  16. ^ a b Matthew L. Wald (December 7, 2010). Nuclear 'Renaissance' Is Short on Largess The New York Times .
  17. ^ a b Sylvia Westall and Fredrik Dahl (June 24, 2011). "IAEA Head Sees Wide Support for Stricter Nuclear Plant Safety" . Scientific American . http://www.scientificamerican.com/article.cfm?id=iaea-head-sees-wide-support .
  18. ^ a b "Gauging the pressure" . The Economist. 28 April 2011 . http://www.economist.com/node/18621367?story_id=18621367 .
  19. ^ (PDF) Key World Energy Statistics 2012 . International Energy Agency . 2012 . https://www.iea.org/publications/freepublications/publication/kwes.pdf . Consultado el 12/16/2012.
  20. ^ "Nuclear Power Plants Information. Number of Reactors Operation Worldwide" . International Atomic Energy Agency . http://www.iaea.org/cgi-bin/db.page.pl/pris.oprconst.htm . Consultado el 21/06/2008.
  21. ^ "BP Statistical Review of World Energy June 2012" . Consultado el 12/16/2012.
  22. ^ a b Trevor Findlay (2010). The Future of Nuclear Energy to 2030 and its Implications for Safety, Security and Nonproliferation: Overview , The Centre for International Governance Innovation (CIGI), Waterloo, Ontario, Canada, pp. 10-11.
  23. ^ Mycle Schneider, Steve Thomas, Antony Froggatt, and Doug Koplow (August 2009). The World Nuclear Industry Status Report 2009 Commissioned by German Federal Ministry of Environment, Nature Conservation and Reactor Safety, p. 5.
  24. ^ a b World Nuclear Association . Another drop in nuclear generation World Nuclear News , 05 May 2010.
  25. ^ "Summary status for the US" . Energy Information Administration. 2010-01-21 . http://www.eia.doe.gov/cneaf/electricity/epa/epates.html . Consultado el 02/18/2010.
  26. ^ Eleanor Beardsley (2006). "France Presses Ahead with Nuclear Power" . NPR . http://www.npr.org/templates/story/story.php?storyId=5369610 . Consultado el 11/08/2006.
  27. ^ "Gross electricity generation, by fuel used in power-stations" . Eurostat . Consultado el 03/02/2007.
  28. ^ Nuclear Power Generation, US Industry Report" IBISWorld, August 2008
  29. ^ "Nuclear Icebreaker Lenin" . Bellona. 2003-06-20 . http://www.bellona.org/english_import_area/international/russia/civilian_nuclear_vessels/icebreakers/30131 . Retrieved 2007-11-01 .
  30. ^ Moonshine
  31. ^ The Atomic Solar System
  32. ^ What do you mean by Induced Radioactivity?
  33. ^ a b Neptunium
  34. ^ "Otto Hahn, The Nobel Prize in Chemistry, Consultado el 01/11/2007.
  35. ^ "Otto Hahn, Fritz Strassmann, and Lise Consultado el 01/11/2007.
  36. ^ "Otto Robert Consultado el 01/11/2007.
  37. ^ The Einstein Letter
  38. ^ Bain, Alastair S.; et al. (1997). Canada enters the nuclear age: a technical history of Atomic Energy of Canada . Magill-Queen's University Press. p. ix. ISBN 0-7735-1601-8 .
  39. ^ "Reactors Designed by Argonne National Laboratory: Fast Reactor Technology" . US Department of Energy, Argonne National Laboratory. 2012 . http://www.ne.anl.gov/About/reactors/frt.shtml . Consultado el 07/25/2012.
  40. ^ "Reactor Makes Electricity." Popular Mechanics , March 1952, p. 105.
  41. ^ "STR (Submarine Thermal Reactor) in "Reactors Designed by Argonne National Laboratory: Light Water Reactor Technology Development"" . US Department of Energy, Argonne National Laboratory. 2012 . http://www.ne.anl.gov/About/reactors/lwr3.shtml#fragment-2 . Retrieved 2012-07-25 .
  42. ^ a b Kragh, Helge (1999). Quantum Generations: A History of Physics in the Twentieth Century . Princeton NJ: Princeton University Press. p. 286. ISBN 0-691-09552-3 .
  43. ^ "From Obninsk Beyond: Nuclear Power Conference Looks to Future" . International Atomic Energy Agency . http://www.iaea.org/NewsCenter/News/2004/obninsk.html . Retrieved 2006-06-27 .
  44. ^ "Nuclear Power in Russia" . World Nuclear Association . http://world-nuclear.org/info/inf45.htm . Retrieved 2006-06-27 .
  45. ^ "This Day in Quotes: SEPTEMBER 16 - Too cheap to meter: the great nuclear quote debate" . This day in quotes. 2009 . http://www.thisdayinquotes.com/2009/09/too-cheap-to-meter-nuclear-quote-debate.html . Consultado el 16/09/2009.
  46. ^ Pfau, Richard (1984) No Sacrifice Too Great: The Life of Lewis L. Strauss University Press of Virginia, Charlottesville, Virginia, p. 187, ISBN 978-0-8139-1038-3
  47. ^ David Bodansky (2004). Nuclear Energy: Principles, Practices, and Prospects . Springer. p. Consultado el 2008-01-31.
  48. ^ "On This Day: October 17" . BBC News. 1956-10-17 . http://news.bbc.co.uk/onthisday/hi/dates/stories/october/17/newsid_3147000/3147145.stm . Retrieved 2006-11-09 .
  49. ^ a b "50 Years of Nuclear Energy" (PDF). International Atomic Energy Agency . http://www.iaea.org/About/Policy/GC/GC48/Documents/gc48inf-4_ftn3.pdf . Consultado el 2006-11-09.
  50. ^ McKeown, William (2003). Idaho Falls: The Untold Story of America's First Nuclear Accident . Toronto: ECW Press. ISBN 978-1-55022-562-4 .
  51. ^ The Changing Structure of the Electric Power Industry p. 110.
  52. ^ Bernard L. Cohen. "THE NUCLEAR ENERGY OPTION" . Plenum Press . http://www.phyast.pitt.edu/~blc/book/chapter9.html . Retrieved December 2007 .
  53. ^ Evolution of Electricity Generation by Fuel PDF (39.4 KB)
  54. ^ Sharon Beder, ' The Japanese Situation ', English version of conclusion of Sharon Beder, "Power Play: The Fight to Control the World's Electricity", Soshisha, Japan, 2006.
  55. ^ Paula Garb. Review of Critical Masses , Journal of Political Ecology , Vol 6, 1999.
  56. ^ Rüdig, Wolfgang, ed. (1990). Anti-nuclear Movements: A World Survey of Opposition to Nuclear Energy . Detroit, MI: Longman Current Affairs. ISBN 0-8103-9000-0 . http://books.google.com/books?id=ZXwfAQAAIAAJ . [ verification needed ]
  57. ^ Brian Martin . Opposing nuclear power: past and present , Social Alternatives , Vol. 26, No. 2, Second Quarter 2007, pp. 43-47.
  58. ^ Stephen Mills and Roger Williams (1986). Public Acceptance of New Technologies Routledge, pp. 375-376.
  59. ^ Robert Gottlieb (2005). Forcing the Spring: The Transformation of the American Environmental Movement , Revised Edition, Island Press, USA, p. 237.
  60. ^ Jim Falk (1982). Global Fission: The Battle Over Nuclear Power , Oxford University Press, pp. 95-96.
  61. ^ a b Walker, J. Samuel (2004). Three Mile Island: A Nuclear Crisis in Historical Perspective (Berkeley: University of California Press), pp. 10-11.
  62. ^ a b Herbert P. Kitschelt. Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies British Journal of Political Science , Vol. 16, No. 1, 1986, p. 57.
  63. ^ a b Herbert P. Kitschelt. Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies British Journal of Political Science , Vol. 16, No. 1, 1986, p. 71.
  64. ^ Social Protest and Policy Change p. 45.
  65. ^ Lutz Mez, Mycle Schneider and Steve Thomas (Eds.) (2009). International Perspectives of Energy Policy and the Role of Nuclear Power , Multi-Science Publishing Co. Ltd, p. 279.
  66. ^ "The Rise and Fall of Nuclear Power" . Public Broadcasting Service . http://www.pbs.org/wgbh/pages/frontline/shows/reaction/maps/chart2.html . Retrieved 2006-06-28 .
  67. ^ Rüdig, Wolfgang, ed. (1990). Anti-nuclear Movements: A World Survey of Opposition to Nuclear Energy . Detroit, MI: Longman Current Affairs. p. 1. ISBN 0-8103-9000-0 . http://books.google.com/books?id=ZXwfAQAAIAAJ .
  68. ^ "The Political Economy of Nuclear Energy in the United States" (PDF). Social Policy . The Brookings Institution. 2004 . http://www.brookings.edu/~/media/Files/rc/papers/2004/09environment_nivola/pb138.pdf . Consultado el 2006-11-09.
  69. ^ "Backgrounder on Chernobyl Nuclear Power Plant Accident" . Nuclear Regulatory Commission . http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/chernobyl-bg.html . Retrieved 2006-06-28 .
  70. ^ http://www.world-nuclear.org/info/inf31.html
  71. ^ "Italy rejoins the nuclear family" . Mundial Nuclear News. 2009-07-10 . http://www.world-nuclear-news.org/NP_Italy_rejoins_the_nuclear_family_1007091.html . Retrieved 2009-07-17 .
  72. ^ "Italy puts one year moratorium on nuclear" . 2011-03-13 . http://www.businessweek.com/ap/financialnews/D9M504RG0.htm .
  73. ^ "Italy nuclear: Berlusconi accepts referendum blow" . BBC News . 2011-06-14 . http://www.bbc.co.uk/news/world-europe-13741105 .
  74. ^ http://www.encyclopedia.com/topic/uranium.aspx
  75. ^ "Second Thoughts About Nuclear Power" . A Policy Brief - Challenges Facing Asia . Enero
  76. ^ "Uranium resources sufficient to meet projected nuclear energy requirements long into the future" . Nuclear Energy Agency (NEA). June 3, 2008 . http://www.nea.fr/html/general/press/2008/2008-02.html . Consultado el 16/06/2008.
  77. ^ NEA , IAEA : Uranium 2007 – Resources, Production and Demand . OECD Publishing, June 10, 2008, ISBN 978-92-64-04766-2 .
  78. ^ https://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter4.pdf table 4.10 and page 271
  79. ^ https://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter4.pdf figure 4.10 and page 271
  80. ^ http://www.oecdbookshop.org/oecd/display.asp?lang=EN&sf1=identifiers&st1=978-92-64-17803-8
  81. ^ http://www.oecd-nea.org/press/2012/2012-05.html
  82. ^ a b "Waste Management in the Nuclear Fuel Cycle" . Information and Issue Briefs . Asociación Nuclear Mundial. 2006 . http://www.world-nuclear.org/info/inf04.html . Consultado el 2006-11-09.
  83. ^ John McCarthy (2006). "Facts From Cohen and Others" . Progress and its Sustainability . Stanford . http://www-formal.stanford.edu/jmc/progress/cohen.html . Retrieved 2006-11-09 . Citing Breeder reactors: A renewable energy source, American Journal of Physics , vol. 51, (1), Jan. 1983.
  84. ^ "Advanced Nuclear Power Reactors" . Information and Issue Briefs . Asociación Nuclear Mundial. 2006 . http://www.world-nuclear.org/info/inf08.html . Consultado el 2006-11-09.
  85. ^ http://www.worldenergy.org/documents/p001515.pdf
  86. ^ http://e360.yale.edu/feature/are_fast-breeder_reactors_a_nuclear_power_panacea/2557/
  87. ^ http://www.world-nuclear-news.org/NN_Sodium_coolant_arrives_at_fast_reactor_2401131.html
  88. ^ http://www.world-nuclear-news.org/NN-Large_fast_reactor_approved_for_Beloyarsk-2706124.html
  89. ^ http://ajw.asahi.com/article/0311disaster/fukushima/AJ201211090056
  90. ^ http://news.xinhuanet.com/english/business/2012-10/31/c_131942867.htm
  91. ^ "Thorium" . Information and Issue Briefs . Asociación Nuclear Mundial. 2006 . http://www.world-nuclear.org/info/inf62.html . Consultado el 2006-11-09.
  92. ^ J. Ongena; G. Van Oost. "Energy for Future Centuries: Will fusion be an inexhaustible, safe and clean energy source?" (PDF) . http://www.iop.org/Jet/fulltext/EFDR00001.pdf . Consultado el 07/21/2012.
  93. ^ MI Ojovan, WE Lee. An Introduction to Nuclear Waste Immobilisation , Elsevier Science Publishers BV, Amsterdam, 315pp. (2005).
  94. ^ Benjamin K. Sovacool (2011). Contesting the Future of Nuclear Power : A Critical Global Assessment of Atomic Energy , World Scientific, p. 141.
  95. ^ "Environmental Surveillance, Education and Research Program" . Idaho National Laboratory. Archivado desde el original en Consultado el 05/01/2009.
  96. ^ Vandenbosch 2007, p. 21.
  97. ^ Ojovan, MI; Lee, WE (2005). An Introduction to Nuclear Waste Immobilisation . Amsterdam: Elsevier Science Publishers. p. 315. ISBN 0-08-044462-8 .
  98. ^ Brown, Paul (2004-04-14). "Shoot it at the sun. Send it to Earth's core. What to do with nuclear waste?" . The Guardian . http://www.guardian.co.uk/uk/2004/apr/14/nuclear.greenpolitics .
  99. ^ National Research Council (1995). Technical Bases for Yucca Mountain Standards . Washington, DC: National Academy Press. p. 91. ISBN 0-309-05289-0 . http://books.google.com/?id=1DLyAtgVPy0C&pg=PA91 .
  100. ^ "The Status of Nuclear Waste Disposal" . The American Physical Society. January 2006 . http://www.aps.org/units/fps/newsletters/2006/january/article1.html . Consultado el 06/06/2008.
  101. ^ "Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada; Proposed Rule" (PDF). United States Environmental Protection Agency. 2005-08-22 . http://www.epa.gov/radiation/docs/yucca/70fr49013.pdf . Consultado el 06/06/2008.
  102. ^ http://www.guardian.co.uk/environment/2012/jul/09/nuclear-waste-burning-reactor
  103. ^ http://www.monbiot.com/2011/12/05/a-waste-of-waste/
  104. ^ http://www.youtube.com/watch?v=AZR0UKxNPh8
  105. ^ NWT magazine, oktober 2012
  106. ^ Sevior M. (2006). "Considerations for nuclear power in Australia" (PDF). International Journal of Environmental Studies 63 (6): 859–872. doi : 10.1080/00207230601047255 . http://www.informaworld.com/smpp/content~db=all~content=a767886528 .
  107. ^ Thorium Resources In Rare Earth Elements
  108. ^ American Geophysical Union, Fall Meeting 2007, abstract #V33A-1161. Mass and Composition of the Continental Crust
  109. ^ Interdisciplinary Science Reviews 23:193-203;1998. Dr. Bernard L. Cohen, University of Pittsburgh. Perspectives on the High Level Waste Disposal Problem
  110. ^ "The Challenges of Nuclear Power" . http://nuclearinfo.net/Nuclearpower/TheRisksOfNuclearPower .
  111. ^ "Coal Ash Is More Radioactive than Nuclear Waste" . December 13, 2007 . http://www.scientificamerican.com/article.cfm?id=coal-ash-is-more-radioactive-than-nuclear-waste .
  112. ^ Alex Gabbard (February 5, 2008). "Coal Combustion: Nuclear Resource or Danger" . Oak Ridge National Laboratory . http://www.ornl.gov/info/ornlreview/rev26-34/text/colmain.html . Consultado el 2008-01-31.
  113. ^ "Coal ash is not more radioactive than nuclear waste" . CE Journal. 2008-12-31 . http://www.cejournal.net/?p=410 .
  114. ^ a b Montgomery, Scott L. (2010). The Powers That Be , University of Chicago Press, p. 137.
  115. ^ a b Al Gore (2009). Our Choice , Bloomsbury, pp. 165-166.
  116. ^ http://www.efn.org.au/NucWaste-Comby.pdf international Journal of Environmental Studies, The Solutions for Nuclear waste, December 2005
  117. ^ "Oklo: Natural Nuclear Reactors" . US Department of Energy Office of Civilian Radioactive Waste Management, Yucca Mountain Project, DOE/YMP-0010. November 2004. Archived from the original on August 25, 2009 . http://web.archive.org/web/20090825013752/http://www.ocrwm.doe.gov/factsheets/doeymp0010.shtml . Retrieved September 15, 2009 .
  118. ^ "A Nuclear Power Renaissance?" . Scientific American . April 28, 2008 . http://www.sciam.com/article.cfm?id=a-nuclear-renaissance&print=true . Consultado el 15/05/2008.
  119. ^ von Hippel, Frank N. (April 2008). "Nuclear Fuel Recycling: More Trouble Than It's Worth" . Scientific American . http://www.sciam.com/article.cfm?id=rethinking-nuclear-fuel-recycling . Consultado el 15/05/2008.
  120. ^ Is the Nuclear Renaissance Fizzling?
  121. ^ Wainwright, Martin (30 January 2013). "Cumbria rejects underground nuclear storage dump" . The Consultado el 1 de febrero de 2013.
  122. ^ Macalister, Terry (31 January 2013). "Cumbria sticks it to the nuclear dump lobby – despite all the carrots on offer" . The Guardian . http://www.guardian.co.uk/environment/2013/jan/31/cumbria-nuclear-waste-dump-analysis . Consultado el 1 de febrero de 2013.
  123. ^ IEEE Spectrum: Nuclear Wasteland . Retrieved on 2007-04-22
  124. ^ "Nuclear Fuel Reprocessing: US Policy Development" (PDF) . http://www.fas.org/sgp/crs/nuke/RS22542.pdf . Consultado el 07/25/2009.
  125. ^ "Adieu to nuclear recycling" . Nature . 9 July 2009 (460, 152) . http://www.nature.com/nature/journal/v460/n7252/full/460152b.html .
  126. ^ Processing of Used Nuclear Fuel for Recycle . WNA
  127. ^ Hambling, David (July 30, 2003). "'Safe' alternative to depleted uranium revealed" . New Consultado el 16/07/2008.
  128. ^ Stevens, JB; RC Batra. "Adiabatic Shear Banding in Axisymmetric Impact and Penetration Problems" . Virginia Polytechnic Institute and State University . http://www.sv.vt.edu/research/batra-stevens/pent.html . Retrieved 2008-07-16 .
  129. ^ a b c Kidd, Steve (January 21, 2011). "New reactors—more or less?" . Nuclear Engineering International . http://www.neimagazine.com/story.asp?sectioncode=147&storyCode=2058653 .
  130. ^ Ed Crooks (12 September 2010). "Nuclear: New dawn now seems limited to the east" . Financial Times . http://www.ft.com/cms/s/0/ad15fcfe-bc71-11df-a42b-00144feab49a.html . Consultado el 12 de septiembre de 2010.
  131. ^ United States Nuclear Regulatory Commission, 1983. The Price-Anderson Act: the Third Decade, NUREG-0957
  132. ^ The Future of Nuclear Power . Massachusetts Institute of Technology . 2003. ISBN 0-615-12420-8 . http://web.mit.edu/nuclearpower/ . Retrieved 2006-11-10
  133. ^ Massachusetts Institute of Technology (2011). "The Future of the Nuclear Fuel Cycle" . p.
  134. ^ a b "Dr. MacKay Sustainable Energy without the hot air " . Data from studies by the Paul Scherrer Institute including non EU data . p. 168 . http://www.inference.phy.cam.ac.uk/withouthotair/c24/page_168.shtml . Consultado el 15 de septiembre de 2012.
  135. ^ a b Nils Starfelt; Carl-Erik Wikdahl, Economic Analysis of Various Options of Electricity Generation - Taking into Account Health and Environmental Effects , http://manhaz.cyf.gov.pl/manhaz/strona_konferencja_EAE-2001/15%20-%20Polenp~1.pdf , retrieved 2012-09-08
  136. ^ "Visualizations : Deaths per TWh by energy sources" . 16 de marzo
  137. ^ Benjamin K. Sovacool . A preliminary assessment of major energy accidents, 1907–2007, Energy Policy 36 (2008), pp. 1802–1820.
  138. ^ a b Steven E. Miller & Scott D. Sagan (Fall 2009). "Nuclear power without nuclear proliferation?" . Dædalus . http://www.mitpressjournals.org/doi/pdfplus/10.1162/daed.2009.138.4.7 .
  139. ^ a b Benjamin K. Sovacool (2011). Contesting the Future of Nuclear Power : A Critical Global Assessment of Atomic Energy , World Scientific , p. 190.
  140. ^ a b c d "The Bulletin of atomic scientists support the megatons to megawatts program" . http://www.thebulletin.org/web-edition/op-eds/support-of-the-megatons-to-megawatts-program . Consultado el 15 de septiembre de 2012.
  141. ^ http://www.usec.com/
  142. ^ Future Unclear For 'Megatons To Megawatts' Program
  143. ^ Nuclear Power in the World Today
  144. ^ Megatons to Megawatts Eliminates Equivalent of 10,000 Nuclear Warheads
  145. ^ a b Benjamin K. Sovacool. Valuing the greenhouse gas emissions from nuclear power: A critical survey . Energy Policy , Vol. 36, 2008, p. 2950.
  146. ^ "Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation" . Yale. 2012 . http://onlinelibrary.wiley.com/doi/10.1111/j.1530-9290.2012.00472.x/full .
  147. ^ Energy Balances and CO 2 Implications World Nuclear Association November 2005
  148. ^ "Life-cycle emissions analyses" . Nei.org . http://www.nei.org/keyissues/protectingtheenvironment/lifecycleemissionsanalysis/ . Consultado el 08/24/2010.
  149. ^ a b c "UNSCEAR 2008 Report to the General Assembly" . United Nations Scientific Committee on the Effects of Atomic Radiation. 2008 . http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_GA_Report_corr2.pdf .
  150. ^ a b c d e f g h i Dr. Frauke Urban and Dr. Tom Mitchell 2011. Climate change, disasters and electricity generation . Londres: Overseas Development Institute y el Instituto de Estudios para el Desarrollo
  151. ^ a b Benjamin K. Sovacool (2011). Contesting the Future of Nuclear Power : A Critical Global Assessment of Atomic Energy , World Scientific, p. 118-119.
  152. ^ Jim Falk (1982). Global Fission: The Battle Over Nuclear Power , Oxford University Press.
  153. ^ "Renewable Energy and Electricity" . Asociación Nuclear Mundial. June 2010 . http://www.world-nuclear.org/info/inf10.html . Retrieved 2010-07-04 .
  154. ^ M. King Hubbert (1956-06). "Nuclear Energy and the Fossil Fuels 'Drilling and Production Practice'" (PDF). API . p. 36 . http://www.hubbertpeak.com/hubbert/1956/1956.pdf . Consultado el 18/04/2008.
  155. ^ Bernard Cohen. "The Nuclear Energy Option" . http://www.phyast.pitt.edu/~blc/book/BOOK.html . Consultado el 12/09/2009.
  156. ^ Greenpeace International and European Renewable Energy Council (January 2007). Energy Revolution: A Sustainable World Energy Outlook , p. 7.
  157. ^ Giugni, Marco (2004). Social Protest and Policy Change: Ecology, Antinuclear, and Peace Movements .
  158. ^ Benjamin K. Sovacool . The costs of failure: A preliminary assessment of major energy accidents, 1907–2007, Energy Policy 36 (2008), pp. 1802-1820.
  159. ^ Stephanie Cooke (2009). In Mortal Hands: A Cautionary History of the Nuclear Age , Black Inc., p. 280.
  160. ^ Kurt Kleiner. Nuclear energy: assessing the emissions Nature Reports , Vol. 2, October 2008, pp. 130-131.
  161. ^ Mark Diesendorf (2007). Greenhouse Solutions with Sustainable Energy , University of New South Wales Press, p. 252.
  162. ^ Mark Diesendorf. Is nuclear energy a possible solution to global warming?
  163. ^ Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources
  164. ^ Levelized Cost of New Generation Resources in the Annual Energy Outlook 2011 . Released January 23, 2012. Report of the US Energy Information Administration (EIA) of the US Department of Energy (DOE).
  165. ^ LEVELIZED COST OF ENERGY ANALYSIS – June 2011
  166. ^ Comparison of Electricity Generation Costs Table 1 and page 24
  167. ^ Spent Nuclear Fuel: A Trash Heap Deadly for 250,000 Years or a Renewable Energy Source?
  168. ^ "Closing and Decommissioning Nuclear Power Plants" . March 7, 2012 . http://www.unep.org/yearbook/2012/pdfs/UYB_2012_CH_3.pdf .
  169. ^ http://eetd.lbl.gov/ea/ems/reports/wind-energy-costs-2-2012.pdf
  170. ^ "Is solar power cheaper than nuclear power?" . August 9, 2010 . http://phys.org/news200578033.html . Consultado el 04/01/2013.
  171. ^ "Solar and Nuclear Costs — The Historic Crossover" . July 2010 . http://www.ncwarn.org/wp-content/uploads/2010/07/NCW-SolarReport_final1.pdf . Retrieved 2013-01-16 .
  172. ^ "Solar and Nuclear Costs — The Historic Crossover" . July 2010 . http://www.eia.gov/oiaf/aeo/electricity_generation.html . Retrieved 2013-01-16 .
  173. ^ http://www.ncbi.nlm.nih.gov/pubmed/17876910 Lancet. 2007 Sep 15;370(9591):979-90. Electricity generation and health. - Nuclear power has lower electricity related health risks than Coal, Oil, & gas. ...the health burdens are appreciably smaller for generation from natural gas, and lower still for nuclear power.
  174. ^ "Renewable energy will overtake nuclear power by 2018, research says" . http://www.guardian.co.uk/environment/2012/oct/30/renewable-energy-nuclear-power .
  175. ^ Scotland aims for 100% renewable energy by 2020
  176. ^ Entwicklungen in der deutschen Strom- und Gaswirtschaft 2012 BDEW (german)
  177. ^ "Nuclear renaissance faces realities" . Platts. (subscription required) . http://www.platts.com/Nuclear/Resources/News%20Features/nukeinsight/ . Consultado el 2007-07-13.
  178. ^ The Nuclear Renaissance (by the World Nuclear Association)
  179. ^ Trevor Findlay. The Future of Nuclear Energy to 2030 and its Implications for Safety, Security and Nonproliferation February 4, 2010.
  180. ^ MV Ramana. Nuclear Power: Economic, Safety, Health, and Environmental Issues of Near-Term Technologies, Annual Review of Environment and Resources , 2009, 34, pp. 144-145.
  181. ^ International Energy Agency, World Energy Outlook , 2009, p. 160.
  182. ^ James Kanter. In Finland, Nuclear Renaissance Runs Into Trouble New York Times , May 28, 2009.
  183. ^ James Kanter. Is the Nuclear Renaissance Fizzling? Green , 29 May 2009.
  184. ^ Rob Broomby. Nuclear dawn delayed in Finland BBC News , 8 July 2009.
  185. ^ Nuclear Power in China
  186. ^ Michael Dittmar. Taking stock of nuclear renaissance that never was Sydney Morning Herald , August 18, 2010.
  187. ^ Nuclear Renaissance Threatened as Japan's Reactor Struggles Bloomberg, published March 2011, accessed 2011-03-14
  188. ^ Analysis: Nuclear renaissance could fizzle after Japan quake Reuters, published 2011-03-14, accessed 2011-03-14
  189. ^ Japan nuclear woes cast shadow over US energy policy Reuters, published 2011-03-13, accessed 2011-03-14
  190. ^ Nuclear winter? Quake casts new shadow on reactors MarketWatch, published 2011-03-14, accessed 2011-03-14
  191. ^ Will China's nuclear nerves fuel a boom in green energy? Channel 4 , published 2011-03-17, accessed 2011-03-17
  192. ^ a b "NEWS ANALYSIS: Japan crisis puts global nuclear expansion in doubt" . Platts. 21 March 2011 . http://www.platts.com/RSSFeedDetailedNews/RSSFeed/ElectricPower/6925550 .
  193. ^ Nucléaire : une trentaine de réacteurs dans le monde risquent d'être fermés Les Échos , published 2011-04-12, accessed 2011-04-15
  194. ^ Krugel, Lauren (May 6, 2011). "Cameco sees minor drop in uranium demand" . The Canadian Consultado el 9 de mayo de 2011.
  195. ^ "Nuclear Energy's Role in Responding to the Energy Challenges of the 21st Century" (PDF). Idaho National Engineering and Environmental Laboratory . http://nuclear.inl.gov/docs/papers-presentations/ga_tech_woodruff_3-4.pdf . Consultado el 21/06/2008.
  196. ^ Plans For New Reactors Worldwide , World Nuclear Association
  197. ^ New nuclear build – sufficient supply capability? Steve Kid, Nuclear Engineering International, 3/3/2009
  198. ^ Bloomberg exclusive: Samurai-Sword Maker's Reactor Monopoly May Cool Nuclear Revival By Yoshifumi Takemoto and Alan Katz, bloomberg.com, 3/13/08.
  199. ^ the largest nuclear generating facility in the world
  200. ^ World Nuclear Association (December 10, 2010). Nuclear Power in China
  201. ^ "Nuclear Power in the USA" . World Nuclear Association . June 2008 . http://www.world-nuclear.org/info/inf41.html#licence . Consultado el 07/25/2008.
  202. ^ China is Building the World's Largest Nuclear Capacity 21cbh.com, 21. Sep. 2010
  203. ^ "China Should Control Pace of Reactor Construction, Outlook Says" . Bloomberg News . January 11, 2011 . http://www.bloomberg.com/news/2011-01-11/china-should-control-pace-of-reactor-construction-outlook-says.html .
  204. ^ "NRC/DOE Life After 60 Workshop Report" (PDF). 2008 . http://www.energetics.com/nrcdoefeb08/pdfs/Life%20After%2060%20Workshop%20Report.pdf . Retrieved 2009-04-01 . [ dead link ]
  205. ^ "Nuclear power: When the steam clears" . The Economist . March 24, 2011 . http://www.economist.com/node/18441163 .
  206. ^ Paton J (April 4, 2011). "Fukushima crisis worse for atomic power than Chernobyl, USB says". Bloomberg.com .
  207. ^ Deutsche Bank Group (2011). The 2011 inflection point for energymarkets: Health, safety, security and the environment. DB Climate Change Advisors , May 2.
  208. ^ John Broder (October 10, 2011). "The Year of Peril and Promise in Energy Production" . New York Times . http://www.nytimes.com/2011/10/11/business/energy-environment/the-year-of-peril-and-promise-in-energy-production.html?src=un&feedurl=http%3A%2F%2Fjson8.nytimes.com%2Fpages%2Fbusiness%2Fglobal%2Findex.jsonp .
  209. ^ "Siemens to quit nuclear industry" . BBC News . 18 September 2011 . http://www.bbc.co.uk/news/business-14963575 .
  210. ^ "IAEA sees slow nuclear growth post Japan" . UPI . September 23, 2011 . http://www.upi.com/Business_News/Energy-Resources/2011/09/23/IAEA-sees-slow-nuclear-growth-post-Japan/UPI-87041316777856/ .
  211. ^ a b Hsu, Jeremy (February 9, 2012). "First Next-Gen US Reactor Designed to Avoid Fukushima Repeat" . Live Science (hosted on Yahoo!) . http://news.yahoo.com/first-next-gen-us-reactor-designed-avoid-fukushima-005203660.html . Consultado el 09 de febrero 2012.
  212. ^ Ayesha Rascoe (Feb 9, 2012). "US approves first new nuclear plant in a generation" . Reuters . http://www.reuters.com/article/2012/02/09/us-usa-nuclear-nrc-idUSTRE8182J720120209 .
  213. ^ Kristi E. Swartz (February 16, 2012). "Groups sue to stop Vogtle expansion project" . The Atlanta Journal-Constitution . http://www.ajc.com/business/groups-sue-to-stop-1351830.html .
  214. ^ a b Adam Piore (June 2011). "Nuclear energy: Planning for the Black Swan". Scientific American .
  215. ^ Matthew L. Wald. Critics Challenge Safety of New Reactor Design New York Times , April 22, 2010.
  216. ^ "Nuclear Power in a Warming World" (PDF). Union of Concerned Scientists . http://www.ucsusa.org/assets/documents/nuclear_power/nuclear-power-in-a-warming-world.pdf . Retrieved 1 October 2008 .
  217. ^ Renewables 2012 Global Status Report p. 21
  218. ^ http://ossfoundation.us/projects/energy/nuclear
  219. ^ Introduction to Fusion Energy , J. Reece Roth, 1986. [ page needed ]
  220. ^ T. Hamacher and AM Bradshaw (October 2001). "Fusion as a Future Power Source: Recent Achievements and Prospects" (PDF). World Energy Council. Archivado desde el original en

Otras lecturas

Enlaces externos